7½ Digit
Precision DC Voltmeter

9 ppm DC Voltmeter
for R&D to Production Lines
High-Accuracy Measurement Approaching the Precision of Reference Instruments

Outstanding Long-term Stability and Temperature Characteristics

1-year long-term guarantee for high accuracy equivalent to an 8-½ digit DMM
A DC voltmeter boasting the long-term stability and ease of use that only Hioki’s field measuring expertise can deliver.

Measure 7-½ digit DC voltage and temperature simultaneously

1-year 9 ppm* Accuracy : DM7276
1-year 20 ppm* Accuracy : DM7275 *10 V range

Fully-Automatic Self-Calibration and Highly-Stable Voltage Reference

Equipped with a newly-developed high-stability voltage reference

The voltage reference in the core represents screened components that have passed our special in-house tests and undergone long-term evaluation before being embedded in the system. Combining this with HIOKI’s original fully automatic “Self-calibration” technology, we are able to offer a 1-year guaranteed 9ppm accuracy (DM7276).

Measuring performance resistant to temperature changes with high repeatability

Equipped with a measurement engine resistant to extreme temperature changes even outside product specifications
Excellent noise performance approaching an 8-½ digit DMM
Specifications ideal for everything from R&D to production lines at 1/4 the conventional costs

Capacitance Contact Check (using built-in C-monitor)
Supports Global Production with Multiple Power Supply Capabilities (100 V to 240 V)
Built-in EXT I/O, LAN, and USB

Noise Performance Approaching an 8-½ Digit DMM and Noise Immunity thanks to Floating Design
Achieving noise performance that approaches reference instruments for calibration

Circuit designs which minimize the effect temperature changes have on sensitive receiving components and Self-Calibration provide stable measurement.
Noise performance represented by the highly-sensitive 100 mV range shows the real proficiency of reference instruments used in calibration. This high-spec machine achieves that performance at 1/4 the conventional costs.

Noise immunity suitable for field work

<table>
<thead>
<tr>
<th>Noise rejection ratio (Voltage measurement)</th>
<th>Common mode current</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMRR signal source resistance of 1 kΩ</td>
<td>10 nA (reference value)</td>
</tr>
<tr>
<td>DC CMRR: 140 dB or more</td>
<td></td>
</tr>
<tr>
<td>AC CMRR: 100 dB or more</td>
<td></td>
</tr>
<tr>
<td>NMRR power supply frequency setting of ±0.1%</td>
<td></td>
</tr>
<tr>
<td>Integration time for 1 PLC, 55 dB or more</td>
<td></td>
</tr>
<tr>
<td>Integration time for 10 PLC, 120 dB or more</td>
<td></td>
</tr>
<tr>
<td>Input bias current</td>
<td></td>
</tr>
<tr>
<td>100 mV/1 V range</td>
<td>30 pA max.</td>
</tr>
<tr>
<td>10 V range</td>
<td>50 pA max.</td>
</tr>
</tbody>
</table>

Data of 0 V repeated measurement with shorted input terminal

Noise resistance is vital for performing stable measurement over long periods of time without external interference. Hioki has achieved basic performance, such as the noise rejection ratio and input bias current, in the reference instruments class.
Guarantees Broadened by High Accuracy Measurement
Advanced Applications

[Aging Test]
Precision for measuring a 4 V battery at 48 μV accuracy
+ Increased efficiency using stable measurements with 1-year accuracy

For tests like OCV (Open Circuit Voltage) aging tests for batteries, where minute voltage changes are monitored over a long time to make a pass/fail judgment, the accuracy and long-term stability of the measuring instrument are essential. The DM7275 and DM7276 are unprecedented DC Voltmeters that ensure accuracy on the calibration device class for one year. Since you don’t need a complex system that considers calibration timing even for long-term data acquisition such as for aging tests, you can easily use it in laboratories. In production work, these devices simplify assembly line design and improve system reliability.

[Transient Characteristics Monitor]
DC Voltage Measurement Resistant to Noise + High-speed Sampling Mode Up to 1 msec × 5000 times

The high-speed sampling mode (measurement count setting function) can measure continuously up to 5000 times per trigger. You can also change the integration time from the fastest setting of 1 msec. This makes it easy to acquire data for measurements which noise made difficult for waveform recording from a Hioki Memory HiCorder or oscilloscope, such as battery charge/discharge properties.

[Temperature Compensation Function]
Simultaneous Temperature Measurement + Display Converted Voltage in Standard Temperature

The OCV for lithium-ion batteries can fluctuate by several dozen μV if the ambient temperature fluctuates by even 1°C (1.8°F). For measured objects with this kind of temperature characteristic, you can use the temperature compensation function to display a value converted into a standard temperature voltage from the registered temperature coefficient. This is a new approach made possible by the DC voltmeter DM Series, which can measure both temperature and voltage simultaneously.

Temperature Compensation formula: V0=Vm/(1+α(T-T0))
Vm: Voltage measurement after NULL calculation, T: Measured temperature, T0: Standard temperature
"7½ digit DC voltage measurement" or "9 ppm high accuracy DC voltage measurement"
High resolution and high accuracy broaden measurement scopes and improve quality assurance.

[External potential measurement for lithium-ion batteries]
Measuring accuracy equivalent to 8½ digit DMM
+ Measurement reliability of capacitance contact check

External potential measurement is effective for detecting poor insulation in the external film of lithium-ion batteries. For measuring devices such as a lithium-ion battery with a molded exterior, not only accuracy but probe contact reliability is vital. The DM Series uses a faint 10 mVrms signal which doesn’t stress the measurement target to measure the capacitance between measurement probes and check contact. A capacitance monitor is built-in for setting the threshold, so you can perform settings while checking the measured value.

[Guaranteed Contact for Scanner Measurement]
Input Resistance 10 GΩ Setting + Preventing False Judgments Using the Contact Check

When measuring DC voltage using an instrument with high input resistance (10 GΩ or more) such as a DMM, one cannot ignore the influence from capacitance in the voltmeter interior or external wiring. Particularly with high-speed switching measurement using a scanner, you need countermeasures to prevent defective products from being released due to poor tester contact. The DM7275 and DM7276 come with a contact check function as standard equipment, so you can easily construct an automated production line.

[Memory HiCorder]
MR8847A
• Waveform judgment function
• High-speed sampling up to 20MS/s with fully isolated inputs
• Max. 64kLogic x 10 analog channels
• 6½ DC Voltmeter unit M86930

[Resistance Meter]
RM3545
• Ultra-high accuracy with multi-channel support
• DC and max. 1A measurement current
• 1 up to 2.2ms measurement speed
• 0.01 μΩ best resolution

[Insulation Tester]
ST5520
• Judgment in as quick as 50 ms
• Test voltage: Set from 25 to 1000 V (1V resolution)
• Insulation resistance: Up to 9996 MΩ (when test voltage is 500 to 1000 V)
• Memory/comparator/timer functions

[Automatic Insulation/Withstanding HiTester]
3153
• Insulation resistance test: up to 9999 MΩ
• Withstanding voltage test: up to 5kV AC/DC
• Full remote control

[Chemical Impedance Analyzer]
IM3590
• Z, L, C, R, σ (conductivity), ε (dielectric constant) testing
• Battery measurement
• Testing source frequency: 1 mHz to 200 kHz
• Measuring time: 2 ms

[Battery Impedance Meter]
BT4560
• Judgment in as quick as 50 ms
• Test voltage: Set from 25 to 1000 V (1V resolution)
• Insulation resistance: Up to 9999 MΩ (when test voltage is 500 to 1000 V)
• Memory/comparator/timer functions

[Tab Welding]
• Automatically determine the current waveform during welding
• Perform 4-terminal resistance measuring on TAB welds for post-welding pass/fail judgments

[Vacuum Dry Sealing]
• Evaluation of insulation resistance and dielectric withstand voltage between electrodes or between an electrode and the exterior after vacuum drying or sealing

[Screening Characteristics Evaluation]
• High-speed screening using AC-IR measurement
• Impedance measurement for electronic-chemical components such as Cole-Cole plots and equivalent circuit analysis

[Evaluation of insulation resistance and dielectric withstand voltage between electrodes or between an electrode and the exterior after vacuum drying or sealing]

[Voltage occurs even after removal due to a residual charge]
3.70V

[Screening Characteristics Evaluation]
• Z, L, C, R, σ (conductivity), ε (dielectric constant) testing
• Battery measurement
• Testing source frequency: 1 mHz to 200 kHz
• Measuring time: 2 ms

[Tab Welding]
• Determines Li-ion battery reliability
• Low-frequency AC-IR measurement without charging/discharging
• R, X, Z, σ measurement
• Test frequency from 0.1 Hz
From R&D to Production Lines

Rich Interface to Support Diverse Situations

The DM7275 and DM7276 are DC Voltmeters that deliver not only measurement accuracy but also polished operability and extensive versatility. In addition to the user interface which uses a resistive touch panel that's useful on-site, they also feature a complete communication interface for linking with external devices.

[Voltage Trend Display]
Displays up to 5000 data items with an integration time from 1 msec to 9999 msec. You can also use the trend display to easily check data including long-term data or data with abrupt changes such as transient properties.

[Statistics Display]
In addition to basic information such as the maximum, minimum, and average values, you can also display information vital to production, such as standard deviation or process capability indices.

[Auto Hold]
As soon as the measured value stabilizes, it is automatically maintained.

[Comparator, BIN]
This digital voltmeter includes a comparator, which sets upper and lower limit values, and a BIN function, which categorizes ten pairs of upper and lower limit values. The screen changes color depending on the results, so you can rest assured even when checking results visually.

[Bar Graph, Smoothing]
You can display a bar graph like an analog meter to match the standard measured value display. Smoothing displays the measured value's moving average (2 to 100 times).

[Customized Display and Panel Saving]
You can change the number of displayed digits (3 to 7 digits) and the date to match the situation and region of use. Change to a simple display that shows only the voltage and temperature, or change the display to match numerical displays of countries that use periods (,) or commas (,) for the decimal point. Each setting is saved internally as panel data. (Up to 30)

[PC Application]
Hioki provides a free application that uses USB communication to acquire data, measure intervals, test communication, load acquired data into Excel, and output acquired data into a CSV file. A multi-function software application, it can also link with external triggers.
Download it for free from the Hioki website at www.hioki.com.
Communication Monitor + Log Function

Monitor the LAN, USB, RS-232C, and GP-IB transmission contents on the panel. Communication commands support SCPI programming, so you can easily replace a generic multimeter. This device supports system construction with its built-in log function, which saves communication content to USB memory.

GP-IB interface
(DM7275-02 and DM7276-02 only)

<table>
<thead>
<tr>
<th>Communication method</th>
<th>IEEE-488.2 compliant Interface function: SHL, AHI, T6, L4, SRI, RL1, PP0, DCI, DT1, C0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addresses</td>
<td>00 to 31</td>
</tr>
</tbody>
</table>

RS-232C interface
(DM7275-03 and DM7276-03 only)

<table>
<thead>
<tr>
<th>Connector</th>
<th>9-pin D-sub female connector with #4-40 inch screws</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication method</td>
<td>Full duplex, start stop synchronization, stop bit of 1 (fixed), data length of 8 (fixed), no parity, no flow control</td>
</tr>
<tr>
<td>Communications speed</td>
<td>9600 bps/19200 bps/38400 bps</td>
</tr>
</tbody>
</table>

LAN interface

<table>
<thead>
<tr>
<th>Connector</th>
<th>RJ-45 connector × 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical specifications</td>
<td>IEEE 802.3 compliant</td>
</tr>
<tr>
<td>Transmission method</td>
<td>10Base-T/100Base-TX (automatic detection)</td>
</tr>
<tr>
<td>Protocol</td>
<td>TCP/IP</td>
</tr>
<tr>
<td>Functions</td>
<td>Setting and measurement using communication commands</td>
</tr>
</tbody>
</table>

USB Device

<table>
<thead>
<tr>
<th>Connector</th>
<th>Series B receptacle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical specifications</td>
<td>USB2.0 (Full-speed)</td>
</tr>
<tr>
<td>Class</td>
<td>CDC class (COM mode) and HID class (USB keyboard mode)</td>
</tr>
</tbody>
</table>

USB host (Flash drive)

| Connector | Type A connector |

Options (Communication cable)

- **RS-232C Cable**: 9637 9pin-9 pin, cross, 1.8 m (5.91 ft)
- **GP-IB Connector Cable**: 9151-02 Cord length: 2 m (6.56 ft)
- **USB Cable (A-B)**: L1002 Cord length: 1 m (3.28 ft)
- **LAN Cable**: 9642 Cord length: 5 m (16.40 ft)

EXT I/O Interface

You can use the rear panel's switch to select either the NPN type (which supports sink output) or the PNP type (which supports source output) for the input signal polarity to match the programmable controller's common polarity.

EXT I/O Signal List (Supports I/O Test Functions)

- **Connector**: 37-pin D-sub female connector with #4-40 inch screws
- **Input**: Photocoupler isolated non-voltage contact input TRIG, KEY LOCK, PRINT, LOAD0 to LOAD4
- **Output**: Photocoupler isolated open drain output EOM, ERR [With BIN function ON] BIN0 to BIN9, OB [With BIN function OFF] OUT0 to OUT16, HI, IN, LO

EXT I/O timing (External trigger, EOM output HOLD)

<table>
<thead>
<tr>
<th>Measure processing</th>
<th>T0: ON; T1: OFF</th>
</tr>
</thead>
</table>

Decision signals

- T0: 0.1 ms or more, T1: 1 ms or more
- T2: 0.1 ms or less (Trigger detection time)
- T3: Contact check integration time + 2 ms
- T4: Trigger delay time
- T5: Acquisition time (See Chart on left.)
- T7: Calculating time 0.1 ms, T8: 1 ms or more

Printer 9442 Connection
(DM7275-03 and DM7276-03 only)

<table>
<thead>
<tr>
<th>Printing method</th>
<th>Thermal serial dot method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper width</td>
<td>312 mm</td>
</tr>
<tr>
<td>Printing speed</td>
<td>52.5 cps</td>
</tr>
<tr>
<td>Power supply</td>
<td>AC ADAPTER 9443-01, or the included nickel hydride batteries (charged using the 9443-01, can print approx. 3000 lines when fully charged.)</td>
</tr>
<tr>
<td>Dimensions and mass</td>
<td>Approx. 160 mm (6.30 in) W x 66.5 mm (2.62 in) H x 170 mm (6.69 in) D, 580 g (20.5 oz)</td>
</tr>
</tbody>
</table>

Options (Printer)

- **Printer**: 9442
- **AC Adapter**: 9443-01, For use in Japan
- **AC Adapter**: 9443-02, For use in the EU
- **Recording Paper**: 1196 25 m (82.02 ft)/10 roll
- **Connection Cable**: 9444 Cable length: 1.5 m (4.92 ft)

When designing a control system using an external interface, be sure to read the instruction manual and check the technical information.
Voltage measurement accuracy specifications (Accuracy guaranteed for 1 year; Post-adjustment accuracy guaranteed for 1 year)

Using low thermal test lead, Integration time Ti: 10 PLC (Power Line Cycles) or more

<table>
<thead>
<tr>
<th>Range</th>
<th>DM7275</th>
<th>DM7276</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mV</td>
<td>±12.000 00 mV</td>
<td>±12.000 00 mV</td>
</tr>
<tr>
<td>1000 mV</td>
<td>±120.000 0 mV</td>
<td>±120.000 0 mV</td>
</tr>
<tr>
<td>100 V</td>
<td>±12.000 00 V</td>
<td>±12.000 00 V</td>
</tr>
<tr>
<td>1000 V</td>
<td>±120.000 00 V</td>
<td>±120.000 00 V</td>
</tr>
</tbody>
</table>

- **Noise error (Additional error due to the integration time Ti)**
 1 PLC ≤ Ti ≤ 10 PLC: ±0.0001% of the range, ±0.5 μV, 0.2 PLC ≤ Ti ≤ 1 PLC: ±0.0003% of the range, ±1 μV, 0.02 PLC ≤ Ti < 0.2 PLC: ±0.001% of the range, ±2 μV

- **Cable error (Additional error for measuring using a cable other than the low thermal test lead)**

Specifications

| DC voltage (LA conversion method), Temperature (when using the Z2001 thermistor sensor) |
| 23°C ±5°C (73°F ±9°F), 80% RH or less (1 hour warm-up) |

<table>
<thead>
<tr>
<th>Measurement range</th>
<th>Measurement accuracy</th>
<th>Measurement time</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10°C to 60.0°C</td>
<td>±0.5°C (±0.9°F)</td>
<td>200 ms ± 20 ms</td>
</tr>
<tr>
<td>80% RH or less</td>
<td>±0.7°C (±1.3°F)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact section</th>
<th>Measurement range</th>
<th>Measurement accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMALL ALLIGATOR CLIP L4934</td>
<td>10 μV</td>
<td>±0.0003% rdg. ±0.8 mV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test lead combination 1</th>
<th>Test lead</th>
<th>Contact section</th>
</tr>
</thead>
<tbody>
<tr>
<td>L9207-10 10 μV</td>
<td>CONTACT PIN L4933</td>
<td></td>
</tr>
</tbody>
</table>

Configurations

DM7276 with 9 pp voltage measurement accuracy

<table>
<thead>
<tr>
<th>Combination</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DM7276-01</td>
</tr>
<tr>
<td></td>
<td>With GP-IB</td>
</tr>
<tr>
<td>2</td>
<td>DM7276-02</td>
</tr>
<tr>
<td></td>
<td>With RS-232C</td>
</tr>
</tbody>
</table>

DM7275 with 20 ppm voltage measurement accuracy

<table>
<thead>
<tr>
<th>Combination</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DM7275-01</td>
</tr>
<tr>
<td></td>
<td>With GP-IB</td>
</tr>
<tr>
<td>2</td>
<td>DM7275-02</td>
</tr>
<tr>
<td></td>
<td>With RS-232C</td>
</tr>
</tbody>
</table>

Options (Test Leads, Sensors)

Combination 1

- **TEMPERATURE SENSOR Z2001**
- **DC 70 VAC 33 V**
- **CONTACT PIN SET L4933**

Combination 2

- **EXTENSION CABLE SET L4931**
- **TEST PIN L4932**

Note: Company names and Product names appearing in this catalog are trademarks or registered trademarks of various companies.